Linear algebra is relatively easy for students during the early stages of the course, when the material is presented in a familiar, concrete setting. But when abstract concepts are introduced, students often hit a brick wall. Instructors seem to agree that certain concepts (such as linear independence, spanning, subspace, vector space, and linear transformations), are not easily understood, and require time to assimilate. Since they are fundamental to the study of linear algebra, students understanding of these concepts is vital to their mastery of the subject. Lay introduces these concepts early in a familiar, concrete Rn setting, develops them gradually, and returns to them again and again throughout the text so that when discussed in the abstract, these concepts are more accessible.
1. Linear Equations in Linear Algebra Introductory Example: Linear Models in Economics and Engineering 1.1 Systems of Linear Equations 1.2 Row Reduction and Echelon Forms 1.3 Vector Equations 1.4 The Matrix Equation Ax = b 1.5 Solution Sets of Linear Systems 1.6 Applications of Linear Systems 1.7 Linear Independence 1.8 Introduction to Linear Transformations 1.9 The Matrix of a Linear Transformation 1.10 Linear Models in Business, Science, and Engineering Supplementary Exercises 2. Matrix Algebra Introductory Example: Computer Models in Aircraft Design 2.1 Matrix Operations 2.2 The Inverse of a Matrix 2.3 Characterizations of Invertible Matrices 2.4 Partitioned Matrices 2.5 Matrix Factorizations 2.6 The Leontief Input=Output Model 2.7 Applications to Computer Graphics 2.8 Subspaces of Rn 2.9 Dimension and Rank Supplementary Exercises 3. Determinants Introductory Example: Determinants in Analytic Geometry 3.1 Introduction to Determinants 3.2 Properties of Determinants 3.3 Cramers Rule, Volume, and Linear Transformations Supplementary Exercises 4. Vector Spaces Introductory Example: Space Flight and Control Systems 4.1 Vector Spaces and Subspaces 4.2 Null Spaces, Column Spaces, and Linear Transformations 4.3 Linearly Independent Sets; Bases 4.4 Coordinate Systems 4.5 The Dimension of a Vector Space 4.6 Rank 4.7 Change of Basis 4.8 Applications to Difference Equations 4.9 Applications to Markov Chains Supplementary Exercises 5. Eigenvalues and Eigenvectors Introductory Example: Dynamical Systems and Spotted Owls 5.1 Eigenvectors and Eigenvalues 5.2 The Characteristic Equation 5.3 Diagonalization 5.4 Eigenvectors and Linear Transformations 5.5 Complex Eigenvalues 5.6 Discrete Dynamical Systems 5.7 Applications to Differential Equations 5.8 Iterative Estimates for Eigenvalues Supplementary Exercises 6. Orthogonality and Least Squares Introductory Example: Readjusting the North American Datum 6.1 Inner Product, Length, and Orthogonality 6.2 Orthogonal Sets 6.3 Orthogonal Projections 6.4 The Gram-Schmidt Process 6.5 Least-Squares Problems 6.6 Applications to Linear Models 6.7 Inner Product Spaces 6.8 Applications of Inner Product Spaces Supplementary Exercises Chapter 7 Symmetric Matrices and Quadratic Forms Introductory Example: Multichannel Image Processing 7.1 Diagonalization of Symmetric Matrices 7.2 Quadratic Forms 7.3 Constrained Optimization 7.4 The Singular Value Decomposition 7.5 Applications to Image Processing and Statistics Supplementary Exercises (ONLINE ONLY) 8. The Geometry of Vector Spaces Introductory Example: The Platonic Solids 8.1 Affine Combinations 8.2 Affine Independence 8.3 Convex Combinations 8.4 Hyperplanes 8.5 Polytopes 8.6 Curves and Surfaces Supplementary Exercises (ONLINE ONLY) 9. Optimization Introductory Example: The Berlin Airlift 9.1 Matrix Games 9.2 Linear Programming - Geometric Method 9.3 Linear Programming - Simplex Method 9.4 Duality Supplementary Exercises Appendices A. Uniqueness of the Reduced Echelon Form B. Complex Numbers Glossary Answers to Odd-Numbered Exercises Index