?
1 Introduction
1.1 What is Data Mining?
1.2 Motivating Challenges
1.3 The Origins of Data Mining
1.4 Data Mining Tasks
1.5?Scope and Organization of the Book?
1.6 Bibliographic Notes
1.7 Exercises
?
2 Data
2.1 Types of Data
2.2 Data Quality
2.3 Data Preprocessing
2.4 Measures of Similarity and Dissimilarity
2.5 Bibliographic Notes
2.6 Exercises
?
3 Exploring Data
3.1?The Iris Data Set?
3.2 Summary Statistics
3.3 Visualization
3.4 OLAP and Multidimensional Data Analysis
3.5 Bibliographic Notes
3.6?Exercises
?
4 Classification: Basic Concepts, Decision Trees, and Model Evaluation
4.1 Preliminaries
4.2 General Approach to Solving a Classification Problem
4.3 Decision Tree Induction
4.4 Model Overfitting
4.5 Evaluating the Performance of a Classifier
4.6 Methods for Comparing Classifiers
4.7 Bibliographic Notes
4.8 Exercises
?
5 Classification: Alternative Techniques
5.1 Rule-Based Classifier
5.2 Nearest-Neighbor Classifiers
5.3 Bayesian Classifiers
5.4 Artificial Neural Network (ANN)
5.5 Support Vector Machine (SVM)
5.6 Ensemble Methods
5.7 Class Imbalance Problem
5.8 Multiclass Problem
5.9 Bibliographic Notes
5.10 Exercises
?
6 Association Analysis: Basic Concepts and Algorithms
6.1 Problem Definition
6.2 Frequent Itemset Generation
6.3 Rule Generation
6.4 Compact Representation of Frequent Itemsets
6.5 Alternative Methods for?Generating?Frequent Itemsets
6.6 FP-Growth Algorithm
6.7 Evaluation of Association Patterns
6.8 Effect of Skewed Support Distribution
6.9 Bibliographic Notes
6.10 Exercises
?
7 Association Analysis: Advanced Concepts?
?
7.1 Handling Categorical Attributes
7.2 Handling Continuous Attributes
7.3 Handling a Concept Hierarchy
7.4 Sequential Patterns
7.5 Subgraph Patterns
7.6 Infrequent Patterns
7.7 Bibliographic Notes
7.8 Exercises
?
8 Cluster Analysis: Basic Concepts and Algorithms
8.1 Overview
8.2 K-means
8.3 Agglomerative Hierarchical Clustering
8.4 DBSCAN
8.5 Cluster Evaluation
8.6 Bibliographic Notes
8.7 Exercises
?
9 Cluster Analysis:?Additional Issues?and Algorithms
9.1 Characteristics of Data, Clusters, and Clustering Algorithms
9.2 Prototype-Based Clustering
9.3 Density-Based Clustering
9.4 Graph-Based Clustering
9.5 Scalable Clustering Algorithms
9.6 Which Clustering Algorithm?
9.7 Bibliographic Notes
9.8 Exercises
?
10 Anomaly Detection
10.1 Preliminaries
10.2 Statistical Approaches
10.3 Proximity-Based Outlier Detection
10.4 Density-Based Outlier Detection
10.5 Clustering-Based Techniques
10.6 Bibliographic Notes
10.7 Exercises
?
Appendix A Linear Algebra
Appendix B Dimensionality Reduction
Appendix C Probability and Statistics
Appendix D Regression
Appendix E Optimization
?
Author Index
Subject Index