The second edition of Computational Fluid Dynamics represents a significant improvement from the first edition. However, the original idea of including all computational fluid dynamics methods (FDM, FEM, FVM); all mesh generation schemes; and physical applications to turbulence, combustion, acoustics, radiative heat transfer, multiphase flow, electromagnetic flow, and general relativity is still maintained. The second edition includes a new section on preconditioning for EBE-GMRES and a complete revision of the section on flowfield-dependent variation methods, which demonstrates more detailed computational processes and includes additional example problems. For those instructors desiring a textbook that contains homework assignments, a variety of problems for FDM, FEM and FVM are included in an appendix. To facilitate students and practitioners intending to develop a large-scale computer code, an example of FORTRAN code capable of solving compressible, incompressible, viscous, inviscid, 1D, 2D and 3D for all speed regimes using the flowfield-dependent variation method is made available.
Part I. Preliminaries: 1. Introduction; 2. Governing equations; Part II. Finite Difference Methods: 3. Derivation of finite difference equations; 4. Solution methods of finite difference equations; 5. Incompressible viscous flows via finite difference methods; 6. Compressible flows via finite difference methods; 7. Finite volume methods via finite difference methods; Part III. Finite Element Methods: 8. Introduction to finite element methods; 9. Finite element interpolation functions; 10. Linear problems; 11. Nonlinear problems/convection-dominated flows; 12. Incompressible viscous flows via finite element methods; 13. Compressible flows via finite element methods; 14. Miscellaneous weighted residual methods; 15. Finite volume methods via finite element methods; 16. Relationships between finite differences and finite elements and other methods; Part IV. Automatic Grid Generation, Adaptive Methods and Computing Techniques: 17. Structured grid generation; 18. Unstructured grid generation; 19. Adaptive methods; 20. Computing techniques; Part V. Applications: 21. Applications to turbulence; 22. Applications to chemically reactive flows and combustion; 23. Applications to acoustics; 24. Applications to combined mode radiative heat transfer; 25. Applications to multiphase flows; 26. Applications to electromagnetic flows; 27. Applications to relativistic astrophysical flows; Appendices.