Fundamentals of Applied Electromagnetics

Fundamentals of Applied Electromagnetics


Yazar Fawwaz T. Ulaby Eric Michielssen Umberto Ravaioli
Yayınevi Pearson Education
ISBN 9781292025711
Baskı yılı 2013
Sayfa sayısı 480
Edisyon 6
Stok durumu Tükendi   

For one- or two-semester courses in Electromagnetics. Widely acclaimed both in the U.S. and abroad, this authoritative text bridges the gap between circuits and new electromagnetics material. Ulaby begins coverage with transmission lines, leading students from familiar concepts into more advanced topics and applications. Maintaining its student-friendly approach, this revision introduces full color and incorporates feedback from instructors and students.
Chapter 1 Introduction: Waves and Phasors 1-1 Historical Timeline 1-1.1 EM in the Classical Era 1-1.2 EM in the Modern Era 1-2 Dimensions, Units, and Notation 1-3 The Nature of Electromagnetism 1-3.1 The Gravitational Force: A Useful Analogue 1-3.2 Electric Fields 1-3.3 Magnetic Fields 1-3.4 Static and Dynamic Fields 1-4 Traveling Waves 1-4.1 Sinusoidal Waves in a Lossless Medium 1-4.2 Sinusoidal Waves in a Lossy Medium 1-5 The Electromagnetic Spectrum 1-6 Review of Complex Numbers TB1 LED Lighting 1-7 Review of Phasors 1-7.1 Solution Procedure 1-7.2 Traveling Waves in the Phasor Domain TB2 Solar Cells Chapter 2 Transmission Lines 2-1 General Considerations 2-1.1 The Role of Wavelength 2-1.2 Propagation Modes 2-2 Lumped-Element Model 2-3 Transmission-Line Equations 2-4 Wave Propagation on a Transmission Line 2-5 The Lossless Microstrip Line 2-6 The Lossless Transmission Line: General Considerations 2-6.1 Voltage Reflection Coefficient 2-6.2 Standing Waves 2-7 Wave Impedance of the Lossless Line TB3 Microwave Ovens 2-8 Special Cases of the Lossless Line 2-8.1 Short-Circuited Line 2-8.2 Open-Circuited Line 2-8.3 Application of Short-Circuit/ Open-Circuit Technique 2-8.4 Lines of Length l = nlambda/2 2-8.5 Quarter-Wavelength Transformer 2-8.6 Matched Transmission Line: ZL = Z0 2-9 Power Flow on a Lossless Transmission Line 2-9.1 Instantaneous Power 2-9.2 Time-Average Power 2-10 The Smith Chart 2-10.1 Parametric Equations 2-10.2 Wave Impedance 2-10.3 SWR, Voltage Maxima and Minima 2-10.4 Impedance to Admittance Transformations 2-11 Impedance Matching 2-11.1 Lumped-Element Matching 2-11.2 Single-Stub Matching 2-12 Transients on Transmission Lines 2-12.1 Transient Response 2-12.2 Bounce Diagrams TB4 EM Cancer Zappers Chapter 3 Vector Analysis 3-1 Basic Laws of Vector Algebra 3-1.1 Equality of Two Vectors 3-1.2 Vector Addition and Subtraction 3-1.3 Position and Distance Vectors 3-1.4 Vector Multiplication 3-1.5 Scalar and Vector Triple Products 3-2 Orthogonal Coordinate Systems 3-2.1 Cartesian Coordinates 3-2.2 Cylindrical Coordinates 3-2.3 Spherical Coordinates TB5 Global Positioning System 3-3 Transformations between Coordinate Systems 3-3.1 Cartesian to Cylindrical Transformations 3-3.2 Cartesian to Spherical Transformations 3-3.3 Cylindrical to Spherical Transformations 3-3.4 Distance between Two Points 3-4 Gradient of a Scalar Field 3-4.1 Gradient Operator in Cylindrical and Spherical Coordinates 3-4.2 Properties of the Gradient Operator 3-5 Divergence of a Vector Field TB6 X-Ray Computed Tomography 3-6 Curl of a Vector Field 3-6.1 Vector Identities Involving the Curl 3-6.2 Stokess Theorem 3-7 Laplacian Operator Chapter 4 Electrostatics 4-1 Maxwells Equations 4-2 Charge and Current Distributions 4-2.1 Charge Densities 4-2.2 Current Density 4-3 Coulombs Law 4-3.1 Electric Field due to Multiple Point Charges 4-3.2 Electric Field due to a Charge Distribution 4-4 Gausss Law 4-5 Electric Scalar Potential 4-5.1 Electric Potential as a Function of Electric Field 4-5.2 Electric Potential Due to Point Charges 4-5.3 Electric Potential Due to Continuous Distributions 4-5.4 Electric Field as a Function of Electric Potential 4-5.5 Poissons Equation 4-6 Conductors 4-6.1 Drift Velocity 4-6.2 Resistance 4-6.3 Joules Law TB7 Resistive Sensors 4-7 Dielectrics 4-7.1 Polarization Field 4-7.2 Dielectric Breakdown 4-8 Electric Boundary Conditions 4-8.1 Dielectric-Conductor Boundary 4-8.2 Conductor-Conductor Boundary 4-9 Capacitance 4-10 Electrostatic Potential Energy TB8 Supercapacitors as Batteries 4-11 Image Method TB9 Capacitive Sensors Chapter 5 Magnetostatics 5-1 Magnetic Forces and Torques 5-1.1 Magnetic Force on a Current-Carrying Conductor 5-1.2 Magnetic Torque on a Current-Carrying Loop 5-2 The Biot-Savart Law 5-2.1 Magnetic Field due to Surface and Volume Current Distributions 5-2.2 Magnetic Field of a Magnetic Dipole 5-2.3 Magnetic Force Between Two Parallel Conductors 5-3 Maxwells Magnetostatic Equations 5-3.1 Gausss Law for Magnetism TB10 Electromagnets 5-3.2 Amp eres Law 5-4 Vector Magnetic Potential 5-5 Magnetic Properties of Materials 5-5.1 Electron Orbital and Spin Magnetic Moments 5-5.2 Magnetic Permeability 5-5.3 Magnetic Hysteresis of Ferromagnetic Materials 5-6 Magnetic Boundary Conditions 5-7 Inductance 5-7.1 Magnetic Field in a Solenoid 5-7.2 Self-Inductance 5-7.3 Mutual Inductance 5-8 Magnetic Energy TB11 Inductive Sensors Chapter 6 Maxwells Equations for Time-Varying Fields 6-1 Faradays Law 6-2 Stationary Loop in a Time-Varying Magnetic Field 6-3 The Ideal Transformer 6-4 Moving Conductor in a Static Magnetic Field 6-5 The Electromagnetic Generator 6-6 Moving Conductor in a Time-Varying Magnetic Field TB12 EMF Sensors 6-7 Displacement Current 6-8 Boundary Conditions for Electromagnetics 6-9 Charge-Current Continuity Relation 6-10 Free-Charge Dissipation in a Conductor 6-11 Electromagnetic Potentials 6-11.1 Retarded Potentials 6-11.2 Time-Harmonic Potentials Chapter 7 Plane-Wave Propagation 7-1 Time-Harmonic Fields 7-1.1 Complex Permittivity 7-1.2 Wave Equations 7-2 Plane-Wave Propagation in Lossless Media 7-2.1 Uniform Plane Waves 7-2.2 General Relation Between E and H 319 TB13 RFID Systems 7-3 Wave Polarization 7-3.1 Linear Polarization 7-3.2 Circular Polarization 7-3.3 Elliptical Polarization TB14 Liquid Crystal Display (LCD) 7-4 Plane-Wave Propagation in Lossy Media 7-4.1 Low-Loss Dielectric 7-4.2 Good Conductor 7-5 Current Flow in a Good Conductor 7-6 Electromagnetic Power Density 7-6.1 Plane Wave in a Lossless Medium 7-6.2 Plane Wave in a Lossy Medium 7-6.3 Decibel Scale for Power Ratios Chapter 8 Wave Reflection and Transmission 8-1 Wave Reflection and Transmission at Normal Incidence 8-1.1 Boundary between Lossless Media 8-1.2 Transmission-Line Analogue 8-1.3 Power Flow in Lossless Media 8-1.4 Boundary between Lossy Media 8-2 Snells Laws 8-3 Fiber Optics TB15 Lasers 8-4 Wave Reflection and Transmission at Oblique Incidence 8-4.1 Perpendicular Polarization 8-4.2 Parallel Polarization 8-4.3 Brewster Angle 8-5 Reflectivity and Transmissivity TB16 Bar-Code Readers 8-6 Waveguides 8-7 General Relations for E and H 8-8 TM Modes in Rectangular Waveguide 8-9 TE Modes in Rectangular Waveguide 8-10 Propagation Velocities 8-11 Cavity Resonators 8-11.1 Resonant Frequency 8-11.2 Quality Factor Chapter 9 Radiation and Antennas 9-1 The Hertzian Dipole 9-1.1 Far-Field Approximation 9-1.2 Power Density 9-2 Antenna Radiation Characteristics 9-2.1 Antenna Pattern 9-2.2 Beam Dimensions 9-2.3 Antenna Directivity 9-2.4 Antenna Gain 9-2.5 Radiation Resistance 9-3 Half-Wave Dipole Antenna 9-3.1 Directivity of lambda/2 Dipole 9-3.2 Radiation Resistance of lambda/2 Dipole 9-3.3 Quarter-Wave Monopole Antenna 9-4 Dipole of Arbitrary Length TB17 Health Risks of EM Fields 9-5 Effective Area of a Receiving Antenna 9-6 Friis Transmission Formula 9-7 Radiation by Large-Aperture Antennas 9-8 Rectangular Aperture with Uniform Aperture Distribution 9-8.1 Beamwidth 9-8.2 Directivity and Effective Area 9-9 Antenna Arrays 9-10 N-Element Array with Uniform Phase Distribution 9-11 Electronic Scanning of Arrays 9-11.1 Uniform-Amplitude Excitation 9-11.2 Array Feeding Bibliography Index